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Abstract—Design oriented modeling of high-temperature su-
perconducting thin-film microwave circuits is difficult when film
thickness is of the order of the penetration depth of the fields.
Involved formulas for loss, phase velocity and characteristic
impedance [1] can be derived from the Bardeen–Cooper–
Schrieffer (BCS) theory of superconductivity. The parameters
required by these formulas do not correspond to “readily
measurable” observable that depend on the manufacturing
process of the superconductor. In this paper an application of
the phenomenological loss equivalence method [2] in modeling
the microwave behavior of planar qnasi-TEM superconducting
transmission lines is presented. Measured and modeled S-pa-
rameters of an existing superconducting coplanar waveguide
lowpass filter agree to within 0.3 dB in magnitude and 0.5 ra-
dians in phase. Extracted values for penetration depth and real
part of the conductivity of the superconducting film are within
10% of the findings of other researchers.

I. INTRODUCTION

DESIGN and modeling of superconducting microwave
circuits is a relatively new venture since the discov-

ery of superconductors with transitions above the 77 K
temperature of liquid nitrogen. When the simplifying as-
sumption that film thickness is much greater than the pen-
etration depth of the fields begins to fail, the complexity
of the complete formulas for surface impedance [1], based
on the BCS theory, makes it impractical to use this theory
for prediction-based design of microwave circuits. Using
these formulas, involved calculations, with many as-
sumed values as design parameters, have to be repeated
with every iteration process of the design. This process is
repeated until the device exhibits the desired perfor-
mance. In addition, due”to the implicit and involved char-
acter of the BCS-theory based formulas, the designer has
no intuitive feeling about how design parameters such as
loss and characteristic impedance are affected by material
parameters such as skin depth and normal conductance.
The approach presented in this paper is an application of
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a phenomenological loss equivalence method [2] used in
the context of a two-fluid theory [3] modeled supercon-
ductor. The mathematical results derived are validated by
application thereof to an actual superconducting coplanar
waveguide (CPW) microwave circuit [4].

II. MATHEMATICAL MODEL

The theoretical results derived are as follows. Due to
the similarity between a normal, conductor and a super-
conductor, the lossless S-parameters of two identical cir-
cuits, one made with a “perfect,” zero-resistance con-
ductor and the other with a superconductor, are the same
(loss-free network). This means that one can model any
known transmission line and calculate its electrical length
and impedance from its geometrical dimensions using the
standard formulas for normal conductors. This analogy
breaks down when losses are included in the S-parame-
ters. This is an important difference since the importance
of high-temperature superconductors lies in reducing
losses. The surface resistance of a normal conductor is
proportional to the square root of the frequency. However
the surface resistance of a superconductor is approxi-
mately proportional to the square of the frequency, in the
limit where penetration depth is much smaller than film
thickness [5].

A superconductor can be viewed as a normal conductor
with a complex conductivity [3]. The real and imaginary
parts of the conductivity correspond to the normal elec-
trons and superconducting electron pairs (Cooper pairs),
respectively, according to the two fluid theory. The con-
ductivity can thus be expressed as [3]:
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where o. is the normal part of the conductivity (normal
electrons), T is the absolute temperature, TCis the critical
temperature of the superconductor, f is the frequency, PO
is the permeability of free space and A is the zero-tem-
perature penetration depth of the magnetic and electric
fields into the superconductor. Using this conductance one
can calculate the additional internal impedance Zi, in
Ohms /meter, due to the penetration of the fields in the
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superconductor and the related surface impedance Z, [2]: and

Zi=Z, ”G”coth(~G” A) (2)

where
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Here G is the incremental inductance geometric factor and
A is the cross-sectional area of the line under character-
ization. The attenuation aC follows directly from the above
[6]:

Re (Zi)
a!c =

2
n

L

z

(3)

in Nepers /m, where L ahd C are the distributed induc-
tance and capacitance of the transmission line, respec-
tively,

This series of calculations is easy to perform numeri-
cally with any mathematical CAD program, for every dif-
ferent set of values of the parameters, but gives no insight
as to how--each individual parameter affects the final result
(the attenuation). The calculations are also impossible to
enter into popular microwave CAD software packages
such as Touchstone (TM) by EEsof Inc., which cannot
handle complex algebra for circuit design and optimiza-
tion.

The equations, however, can be reduced algebraically
to obtain the following explicit formulas for Re (Zi ) and
~, the effective characteristic impedance, including the
effects of loss:

+ exp (2B “ COS’0)

(“COS 2B”sin0+~+~–x )1(4)

where 20 and ~~ffare the values of the characteristic
impedance and effective dielectric constant calculated us-
ing circuit theory and ,Cis the velocity of light in vacuum
[7], [8]. From these, the effective’ wave slowing factor n
arising from the extra inductance due to the penetration
of the fields can be expressed as

1

where
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The corrected phase velocity (v; ) and the corrected effec-
tive dielectric constant (&f ) can then be expressed as fol-
lows in tefis of their original values:

(7)
rb

E:ff = q,ff “ n2. (8)

These equations have been entered into MathCAD (TM)
(MathSoft Inc.) and validated numerically. They were also
entered into a Touchstone circuit file for modeling and
design purposes.

III. APPLICATION ANDVALIDATIONOF THE MODEL

For validation of the model, data were used from mea-
surements of an yttrium barium copper oxide (YBCO) su-
perconducting thin-film coplanar-waveguide low-pass fil-
ter on a lanthanum aluminate substrate. The popular
microwave CAD software package Touchstone was used
for modeling. The YBCO filter was designed and pro-
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duced at JPL for the Naval Research Laboratory (NRL)
High Temperature Superconductivity Space Experiment
(HTSSE) [4]. These films are of varying quality and prop-
erties and further characterization is desirable. Their per-
formance in different environmental and electrical condi-
tions needs to be evaluated. The two fundamental
parameters, zero-temperature penetration depth and nor-
mal conductivity, were optimized for best fit between
measured and modelled data and then compared to re-
ported values from other sources. These extracted param-
eters were found to be in very good agreement (within
10%) with the findings of independent measurements.

The layout of the filter is shown in Fig. 1. It consists
of alternating high and low impedance lines with ground
plane on both sides (coplanar waveguide (CPW)). The in-
put and the output are K-connector-to-CPW transitions
and the taper has been optimized to hold characteristic
impedance to a constant 50 Q. The filter was modelled in
Touchstone using generic transmission line elements in-
cluding loss calculated using (3).

The long equations (4) and (5) were broken into smaller
sub-equations so as to accommodate the limited capabil-
ities of the program. The impedance steps were modeled
using 2-port S-parameter files (s2p files). These were cal-
culated using an electromagnetic analysis software pack-
age which uses the Galerkin method of moments for ana-
lyzing an arbitrary geometry circuit for its S’-parameters
[9]. The software package is EM by Sonnet Software Inc.
The S-parameters were de-embedded with reference
planes at the discontinuity. Thus they do not contribute
additional phase or loss. A similar analysis was per-
formed for the input and output 50 Q tapers and they are
included as S-parameter files as well. The curved geom-
etry of the circuit is ignored in the analysis (i. e., the trans-
mission lines are assumed to be of the same length on a
straight line). Dielectric losses were considered in the
analysis though they turn out to be orders of magnitude
smaller than resistive losses in our case and can actually
be neglected. They are included, however, for the sake of
completeness of the model.

The dielectric loss tangent of the lanthanum aluminate
(LaAIOg) substrate was optimized for best fit between
measured and modeled data. The optimum value for it
was 0.0001. If set to zero, it would affect the final mod-
elled S21 curves by less than 0.05 dB. The two main pa-
rameters which were optimized in the final run for loss
match at the liquid nitrogen temperature of 77 K are the
zero-temperature penetration depth A and the normal con-
ductivity component amof the superconductor. The lengths
of the input and output tapers and the 50 Q lines were
optimized for phase match.

Figs. 2 and 3 are plots of measured versus modeled
values of magnitude and phase of S21, respectively. The
agreement between modeled and actual data is very good.
The almost perfect match of the slopes of the phases in-
dicates that the formulas successfully account for wave
slowing due to any additional penetration-depth-induced
inductance. The extracted optimized parameters are as
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Fig. 2. Measured (YBCO) versus modeled (FIL) magnitude ofS21.
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Fig. 3. Measured (YBCO) versus modeled (FIL) phase of S21,

follows:

h = 4830 ~

tJn = 1.8 x 106 S/m.

All measurements which were used for modeling-fitting
purposes were made at liquid nitrogen (LNZ) temperature
of 77 K. The critical temperature of the films, from pre-
vious dc measurements, were found to be in the range
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Fig.4. Measured (YBCO)response at50,60,70, and80K.

from 83 to 88 K. For modeling purposes, a TCof 85 K
was assumed since this parameter could not be optimized
as it is not linearly independent of al and 02. The inac-
curacy in that assumption is about an 8 % difference in X
per degree of difference of TCfrom its actual value.

The values obtained for the parameters A and a. are
reasonable values. Polakos et al. from AT&T Bell Labs
report on a similarly deposited high-temperature super-
conducting microstrip circuit with a zero-temperature
penetration depth of 4500 ~, very close to the value ex-
tracted from this analysis [10]. As they point out in their
paper, this is only an overall weighted average of the real
penetration depth, the latter being larger in non-uniform
areas (comers, imperfections) of the film. Published data
on state of the art high-purity crystals give values of 1400
~ for zero-temperature penetration depth and 1.14 x 106
S/m for normal conductivity [11]. The discrepancy be--
tween the single crystal and film results maybe due to the
existence of grain boundaries or defects in the YBCO film.

Further validation for the extracted values and the pro-
posed model is’ obtained from the temperature-depend-
ence agreement between measured and modeled data.
The only data which was calibrated correctly (de-embed-
ded to the reference ports of the circuit) is that from the
measurements made at 77 K with the circuit immersed in
LN2. The rest of the measurements, taken at different
temperatures in the range from 15 to 95 K, were per-
formed in the vacuum jacket of a closed-cycle refrigera-
tor. The connectors in the refrigerator could not be cali-
brated out and their loss and phase is included in the
measured S-parameters. These losses, assumed approxi-
mately constant over’ the frequency range from 7 to 11
GHz, translate the actual S21 curves up or down in the
graph but do not affect the slope of IS21 I away from the
pass-band. Fig. 5 was obtained by assuming the model
derived from the 77 K data valid and merely changing the
parameter T to the measured values. It shows the pre-
dicted filter response at various temperatures. The ‘good
agreement of the predicted roll-off beyond the comer fre-
quency with the measured curves plotted in Fig. 4 indi-
cates that the validity of the model covers the whole range
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Fig. 5. Modeled response at 50, 60, 70, and 80 K.

from 50 K to about 80 K. Further modeling reveals sat-
isfactory results in the 15 to 95 K temperature range.

IV. CONCLUSION

A practical mathematical model for use in design-based
modeling of high-temperature superconductor microwave
circuits has been presented. Application of the model to
an existing circuit exhibits very good agreement between
the model and the actual circuit and suggests the existence
of imperfections in the modeled crystalline superconduct-
ing circuit. Given pre-measured material parameters,
namely the normal conductivity and the zero-temperature
penetration depth qf the superconductor, complete mod-
eling of arbitrarj planar TEh4 high-temperature supercon-
ductor circuits is now possible using commercially avail-
able conventional microwave CAD software packages.
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